
Technical Report TR-67-48

TRANSLATOR AND SIMTLATOR
for the

COMPUTER DESIGN AND SIMULATION

VEZSION I.
PROGRAM (CDSP)

May 1967

Charles K. Mesztenyi
Senior Research Programmer

Computer Science Center

The work was performed at the Computer Science Center of the University
of Maryland and was supported by Grant NsG-398 of the National
Aeronautics and Space Administration.

I'
B
1
6
T

1
1

i

I
8
1
f
f
I

- 1 -

Abstract

The design of a digital computer, or digital device, can be described

by the Computer Design Language. This Language was proposed by Dr. Y. Chu:

An ALGOL-like Computer Design Language, Corn. of ACM, Vol. 8 , No. 10

(Oct. 1965), p. 607-615. This report describes a restricted form of the

Language in more details for the use of the Computer Design and Simulation

Program (CDSP) on IBM 7094. The CDSP consists of an Executive Main program

under which various subprograms may be called.

detailed flow charts of the Translator and Simulator subprograms.

Translator establishes various symbol tables and a Polish string from the

description of the designed computer. The Simulator executes test programs

written for the designed computer and prints out the contents of prescribed

registers.

This report contains the

The

- 2 -

Contents :

1. Computer Design Language

1.1 Card Format

1.2 Constants, Variables

1.3 Declaration Statements

1.4 Operators

1.5 Expressions, Microstatements, IF Statement

1.6 Terminal Declaration

1.7 Comment Statement

1.8 Switch Statement and Labeled Statement

1.9 END Statement

2. Executive Program

3. Translator

3.1 Description

3.2 Flow Charts

4 . Simulator

4 . 1 Description

4.2 Flow Charts

5. Available Binary Operators

3

3

6

6

11

12

13

14

14

1 5

16

17

17

29

50

5 0

54

65

,.
- 3 -

1. Computer Design Language

A Computer Design Language was proposed by Dr. Yaohan Chu: "An ALGOL-like

Computer Design Language" Corn. of ACM, V o l . 8, No. 10 (Oct. 1965) p. 607-

615. The Computer Design and Simulation Program (CDSP) implements a subset

of this language on the IBM 7094 for simulation purposes. Using this lan-

guage, the Design of a Digital Computer is described by the declaration of

its digital devices and by the description of the interaction between the

declared devices.

The following devices are permissible in CDSP, Version I.:

A Register is handled as a storage device identified by a name and by

the number of bits it contains.

A Subregister refers to a portion of a register.

A Memory is a multiple storage device with its elements, called words,

all having the same number of bits. The words are consecutively addressed,

and only one of the words can be referenced at a time. The address of the

referenced memory word is defined by the contents of a declared register.

A Decoder is an output signal (TRUE or FALSE). The subscript of the

decoder is compared to the contents of a specified register or subregister

defined in the decoder declaration and the output signal is given according

to the equivalence of the two values. The TRUE or FALSE signal is represented

with a binary bit one or zero, sometimes referred as YES or NO.

A Switch is handled as a special storage device, where the "contents"

of the switch is one of its possible positions. Changing the position of a

switch may initiate an action between other devices.

A Terminal represents output signals referring to the outcome of a

logical expression simulating logical network with no storage element.

I
f
1
a
1
I
I
s
I
Y
I
1
I
E
I
I
I
8
1

- 4 -

_I__ Clock r e p r e s e n t s a t iming device g iv ing an output s i g n a l a t equal

t i a e s t e p s .

During t h e s imula t ion , t h e clock i s a l s o used f o r count ing.

During one ti-mestep, d i f f e r e n t a c t i o n s may occur between devices .

The i n t e r a c t i o n of the declared devices i s descr ibed by Labeled

Statements . These s ta tements conta in two p a r t s : The Label p a r t i s a

l o g i c a l express ion y i e l d i n g one output s i g n a l (TRUE o r FALSE).

p a r t , conzaining t h e microstatements , desc r ibes t h e a c t i o n t o be taken

The o t h e r

when t h e Label has a TRUE output s i g n a l .

Exania l e :

AEGISTER, A (2) , R, F(5) , G(5)

DECODER, K = A

CLOCK, P

...
/K(3)*P/ F = G, R = 1, A = 0

...
/K(O)*P/ F = G*25, R = G O) , A = 7

...
I n tiie f i r s t l i n e , 4 r e g i s t e r s , A , R, F and G are dec la red , they con-

sist of 3 , 1, 6 and 6 b i t s respec t ive ly .

The second l i n e d e f i n e s the decoder K connected t o t h e r e g i s t e r A.

Clock P i s def ined by t h e t h i r d l i n e .

The l a s t two l i n e s are independent l abe led s ta tements . I f t h e va lue

of t h e l a b e l , K(3)*P, i s TRUE, then t h e con ten t s of G r e p l a c e s t h e con ten t s

of i, R and A w i l l have t h e conten ts 1 and 0 r e s p e c t i v e l y .

TRUE only i f 2:ir coz ten t s of A is 3 and a n output s i g n a l i s given by t h e

c lock P. The second l abe led s ta tement i s executed when K(O)*P i s TRUE,

K(3)*P w i l l be

- 5 -

(1.e. t h e con ten t s of A i s zero) and an ou tpu t s i g n a l is given

by t h e clock P .

Zy t h e r e s u l t of a l o g i c a l AND with t h e con ten t s of G and t h e

o c t a l cons t an t 2 5 , t h e conten ts of R i s replaced by t h e second

b i t o f G, and t h e con ten t s of A w i l l be 7.

I n t h i s case, t h e con ten t s of F i s replaced

The p r e c i s e r u l e s f o r forming t h e Declara t ion and Labeled

Statements are descr ibed i n t h e subsequent sec t ions .

- 6 -

1.1 Card Format

Using the Computer Design Language, the machine design should be

punchedh CDSP with the following format:

Col. 1 normally will be blank.

If it contains "C", then it is regarded as a comment

card, and it is not processed. If it contains "l", then

it is regarded as a continuation of the last non-comment

card.

Col. 2-72 contain the description statement. Blank characters

are simply ignored by the Translator and may be used freely

to improve the readability of the statements.

are not processed by the Translator, they may be used

for sequence numbering or other identification.

Col. 73-80

1.2 Constants. Variables,

1.21 Constants

All numbers are regarded as positive octal integers, thus digits 8 and

9 may not be used for constants.

octal digits. Examples: 17, 0, 123500

1.22 Variables

Furthermore, no constants may exceed 12

The Registers, Subregisters, Memories, Decoders, Switches, Clocks and

Terminals are treated as variables. ,All variables must be declared in a

Declaration Statement prior to their usage elsewhere.

The name of a variable must be unique and must consist of 1 to 6

alphabetic or numeric characters of which the first must be alphabetic.

Examples: A, BI9, R25ABC

Restriction: IF, THEN, END may not be used as variable names.

The usage of the variables after declaration may take different forms;

they are described under the corresponding Declaration Statements.

- 7 -

1.3 Declaration Statements

All variables must be declared in one of the Declaration Statements

Column 1 must be blank and col. 2-72 prior to any use of that variable.

must contain the declaration type, comma and list.

by the Translator.

1.31 Register Declaration

Form: REGISTER, list

Examples: REGISTER, A (5) , B2(10),C

Blanks will be disregarded

This statement declares all variables appearing in the list as registers.

The list consists of single register definitions separated by commas. A

single register definition consists of the name of the register followed

by octal number enclosed in parentheses. This octal number, d, defines

the register as one having d+l bits which are numbered from zero to d con-

secutively.

zero in parentheses may be deleted, see the above example with register C.

When a register consists of only one bit, the corresponding

After its declaration, a register may be referred in the following forms:

1. B2

2. B2(3)

3. B2(0-2) or B2(4-7)

4. B2(@P)

B2 refers to the contents of the full declared register.

B2(3) refers only to the 4th bit of the register.

B2(0-2) refers to the first 3 bits of the register

B2(@P) refers to the part of the register defined by flP as a subregister,

see below:

- 8 -

1.32 Subregister Declaration

1 .Porn: SUBREGISTER, list

Example: SUBREGISTER, B2(@P) = B2(1-4), A(@P) = A(0-3), A (1) = A (4)

The subregister is always used with a register name, and it refers to

a part of that register. Logically the list consists of a set of equiva-

lences separated by commas.

above declaration example, B2(1-4) is understood.

1.33 Memory Declaration

Form : MEMORY, list

Example: MEMORY, M(C) = M(77,10), ND(J) = ND(6,3)

When B2(@P) appears in the text following the

This declaration statement permits the user to establish various blocks

of memory, each addressable by a specified address register. Each individual

memory'definition in the list is of the form

N(X) = M(dl, d2)

where

M is the name of the memory.

R is the name of the corresponding address register. R must have been

previously declared.

5 is the dimension of the memory in octal. (i.e. the memory M consists

of d + 1 words consecutively numbered from 0 to d) 1 1
d is the length of each word of the memory in octal. (i.e. each word 2

of M consists of d + 1 bits) 2
In later reference, a specific memory word may be identified by a con-

stant address, e.g. M(12), or by its address register, M(R), in which case

the contents of R defines the word address. In any case, one is always

referring to the contents of the full word of memory.

- 9 -

1 . 3 4 Decoder Declaration

Form: DECODER, list

Example: DECODER, K = F, L = G(2-5)

The list consists of the individual decoder definitions separated by

commas. An individual decoder definition consists of the name of the

decoder, the = character and the name of a previously declared register which

may be subscripted. Each decoder declaration provides a reference to the

contents of the associated register or register-segment. In its use, the

decoder name is always followed by a constant enclosed in parentheses,

e.g. K (5) , whose value is a single bit (1 or 0, TRUE or FALSE,depending on

whether or not the contents of the register or register part is equal to

the given constant.

1.35 Clock Declaration

form: CLOCK, P (d) TI

Example: CLOCK, P(2)

where P is the name of the clock and d is an octal number.

This declaration defines (d+l) (3 in the example) clocks. These clocks

are referenced in the statements as P(0) (or simply P), P(l), ..., P(d). The

impulse diagrams for the clocks are assumed to be the following:

- 10 -
i.e. the time interval between the impulses given by the clocks are

the same and the impulse given by clock P(i) immediately follows the impulse

of P(i-l)., i=1,2,. . . ,d.
The clocks are used for counting during the simulation, thus the con-

tents of the clock is the accumulated number of impulses given from the

start.

1.36 Switch Declaration

Form : SWITCH, list

Example: SWITCH, START(OFF,ON), SENSE (Ply P2, P3)

The list consists of single switch definitions separated by commas.

A s i n g l e switch definition consists of the name of the switch followed by its

positions enclosed in parentheses and separated by commas.

tion listed is assumed to be the starting position of the switch, i.e. the

The first posi-

position of the switch at the start of the simulation. In the above example,

the START switch is in OFF position, the SENSE switch is in P position. 1
In later references, a switch is either checked for one of its position,

or set to one of its position. When a switch is checked for a position, it

has the form

NAME (POS) e.g. SENSE (P2)

and it gives a TRUE or FALSE (bit 1 or 0) depending on the position of the

switch at the time of the reference.

When a switch is set to a position, it must appear as follows:

NAME = POS e.g. SENSE = P3

1.37 Terminal Declaration

Terminal declarations is described in 1.6.

I
I

I
8
I
I
1
I
8
1

I
8
8

- 11 -

1 . 4 Operators

With t h e except ion of t h e Complement ope ra to r , t h e a v a i l a b l e ope ra to r s

are b ina ry ope ra to r s , i .e . from two b inary q u a n t i t i e s they produce one

b ina ry quan t i ty . I n t h e Computer Design Language, a b ina ry quant i ty ' i s def ined

by i t s va lue and by t h e number of b i t s i n which it i s represented .

a v a i l a b l e b inary ope ra to r s r equ i r e t h a t t h e two b ina ry q u a n t i t i e s on which

they ope ra t e , should have t h e same number of b i t s . E.g. t h e b ina ry o p e r a t o r

l o g i c a l AND, ope ra t ing on t h e conten ts of two r e g i s t e r s , i s used c o r r e c t l y

i f and only i f t h e two r e g i s t e r s have t h e same l eng th i n b i t s .

The

The o c t a l cons t an t s used i n the language are except ions of t h e above

r u l e by having undefined length . A s soon as a cons t an t is connected t o a

v a r i a b l e by a b inary o p e r a t o r , i t s l e n g t h i s def ined t o be equa l t o t h e

l e n g t h of v a r i a b l e by t ak ing t h e necessary number of b i t s from t h e b inary

r e p r e s e n t a t i o n of t h e cons t an t f r o m r i g h t t o l e f t , p l ac ing ze ro b i t s i n t h e

f r o n t of i t i f i t i s necessary . This d e f i n i t i o n r e q u i r e s t h a t a b ina ry

ope ra to r may no t be used t o ope ra t e on two cons t an t s , i .e . a t least one

of t h e q u a n t i t y must be a v a r i a b l e . Furthermore, t h e unary ope ra to r , t ak ing

t h e complement of t h e number, may n o t be used w i t h a cons t an t .

The fol lowing ope ra to r s are a v a i l a b l e i n CDSP, Version 1:

' (Apostrophe)

Example: A'

The apostrophe ope ra to r takes t h e b ina ry complement of t h e number i t

r e f e r s t o , t h e con ten t s of A.

= (Equal s i m)

Examples: A = B o r A = 25

This i s a r e p l a c e ope ra to r i . e . t he con ten t s of A is rep laced by t h e

con ten t s of B o r by t h e cons t an t 25.

- 12 -
+ (Pius signj

.Examples: A + B or A + 15
The plus sign denotes a logical OR between two binary quantities.

* (Asterisk)
Examples: A*B or A*27

The asterisk denotes a logical AND between two binary quantities.

Functions

Form: .NAME.

where NAME can consist of 1 to 6 alphabetic or numeric characters of which

the first must be alphabetic, not including the preceding and following

periods.

Examples: A.ADD.B or A.SHR.l

These examples are binary operators; they are supplied by the standard

function package, see Section 5.

1.5 Expressions, Kicrostaternents, IF Statement

1.51 Expressions

An expression is a proper sequence of constants, variables, operators

(except =) and parentheses, with the usual mathematical meaning.

Examples: (A + B) * C + 1 . or D or 10

An expression provides a single binary quantity (composed of one or more

binary bits depending on the operators and variables involved) that result

from the implied evaluation.

When the hierarchy of operations in an expression is not explicitly

specified by the use of parentheses, it is understood by the Translator to

be in the following precedence (from the innermost operations to the outermost):

I
I
8
I
1
I
8
1
I
8
8
I
I
8
8
I
I
8
8

- i3 -
1 Complementing

.xxx. Functions

* Logical AND

+ Logical OR

1.52 Microstatement

A microstatement consists of a variable, the replace operator "="

and an expression.

Examples: A = 1 or A = B * C + D
1.53 IF Statement

The IF Statement has the following fokn:

IF (expression) THEN (microstatements and/or IF statements)

The expression enclosed in parentheses must give a single bit answer one

or zero (TRUE or FALSE).

by commas and enclosed in parentheses after THEN will be evaluated.

answer is FALSE, then all statements within the parentheses are skipped.

Example: IF ((G(l)*B(l)).EQU.l) THEN (G(1) = 0, A = B)

If the answer is TRUE, all microstatements separated

If the

The IF Statement is sometimes referred as conditional microstatement.

1.6 Terminal Declaration

Form: TERYINAL , list

Example: TERMINAL, T = A * B + C y R = G(2-7) + 1
The list consists of the individual terminal definitions separated by

commas. The individual terminal is defined by a microstatement, i.e. by the

name of the terminal followed by the replace operator and by an expression.

All variables appearing in the expression must have been declared previously.

When a terainal is referenced, its value is the binary quantity obtained

by the evaluation of its declared expression.

I
I
I
I
1
I
I
8
8
1
8
1
I
8
8
E
I
8
1

- 14 -
1.7 Comment Statement

When column 1 contains a "C", the card is understood and it will not

be processed.

1.8 Switch Statement and Labeled Statement

Switch Statercents and Labeled Statements are logically different, but

Either consists of a label which is an expression their form is the same.

enclosed in slashes, and one or more microstatements following the label.

The microstatements are separated by commas. The end of the statement is

indicated either by a new label or by the END statement, thus it may be

written in more than one line (card) without using col. 1 =1 for indicating

continuation.

rorm: 1

/EApression/ microstatements and/or IF statements

In both types, the expression of the label must give a single b i t value,

TRUE or FALSE.

1.81 Switch Statement

The label of the Switch Statement is a switch name followed by one of

its positions enclosed in parentheses:

/Name (Position) /

During the simulation, the switch statement has the following meaning:

If the named switch is set to the position indicated within the parentheses,

the label expression is TRUE and the following microstatements will be executed.

The position of a switch may be set by either a microstatement (NANE = POS),

which corresponds to an internal switch operation, or by a manual operation

which is simulated by reading a control card.

I
I
I
R
I
8
I
8
8
I
8
8
8
I
1
I
1
I
I

- 15 -
1.82 Labeled Statement

During the simulation, all labels are evaluated. If there

are more than one label with a TRUE value, the simulation stops

indicating an error. If there is only one label with TRUE value,

then the microstatements following that label will be executed

and the process repeats itself. If there are no labels with

TRUE value, the simulation gives the control back to the executive.

routine.

1.9 END statement

The physical end of the program describing the designed

computer is indicated by the END statement.

be anywhere in col. 2-72, with the rest of the columns left blank.

The word END can

I
8
1
I
I
I
I
8
I
1
8
I
I
B
1
1
I
8
I

- 16 -

2. EXECUTIVE PROGRAM

The Computer Design Program c o n t a i n s v a r i o u s subprograms,

such as t h e T r a n s l a t o r , Simulator , Boolean and C i r c u i t Subpro-

grams. The subprograms a r e monitored by t h e Execut ive Program.

I t a c c e p t s c o n t r o l ca rds with $ c h a r a c t e r i n column 1 and it

g i v e s t h e c o n t r o l t o the proper subprogram.

Beside monitor ing, t h e Execut ive Program a l s o handles t h e

communication between d i f f e r e n t subprograms. The r e s u l t s of

t h e executed subprograms a r e saved on an a u x i l i a r y t ape . The

c o n t e n t s o f t h i s t a p e i s re ferenced through a l i s t i n t h e Zxecu-

t i v e Program which i s c a l l e d t h e Communication Table. When

ano the r subprogram needs t h e r e s u l t s o f a p r e v i o u s l y executed

subprogram, t h e Execut ive Program s u p p l i e s them by r ead ing t h e

a u x i l i a r y t a p e .

The Execut ive Program h a s t h e fo l lowing c o n t r o l ca rds :

$START

$START m

causes a n o v e r a l l s t a r t wi th empty Communica-
t i o n Table.

causes a restart . I t must be followed by m
c a r d s con ta in ing t h e Communication Table.

- 17 -

NAME

R

SR

3 . T W S L A T O R

COUNTER DESCRIPTION

\
NR Reg i s t e r Table

NSR Subreg i s t e r Table I

3.1 Descr ip t ion

M

D

sw

The Trans l a to r e s t a b l i s h e s var ious symbol t a b l e s and a P o l i s h s t r i n g

‘ r i

(d
I3

0
P

v3

NM Memory Table P

ND Decoder Table 4

Switch Table NSW

from t h e inpu t ca rds conta in ing t h e d e s c r i p t i o n of t h e designed computer

T NT

C NC

u s ing t h e Computer Design Language.

Terminal T a b l e

Clock Table

The e s t a b l i s h e d t a b l e s are as fo l lows:

SWL

LST

P

-~~ ~~

NSWL Switch Lable Table

NLST Labeled Statement Table

NP P o l i s h S t r ing

STORE NSTORE Storage Array.
The counter corresponds t o t h e l a s t bit used i n t h e
a r r a y ,

I
1
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

BCD name of
the register

- 18-
The Symbol Tables are generated by the corresponding Declaration

Statement. For each storage element of the designed computer, such as the

registers, memories and switch positions, a unique position is assigned in

the Storage Array.

The logical expressions and microstatements, such as the Terminal

Expressions, the microstatements of the Switch Label Statement, the Labeled

Statements, are translated into reverse Polish notation and stored in the

Polish String.

the expressions and microstatements. The Terminal Table contains the

pointers to their expression in the Polish String.

contains the labels (switch names and positions) with the pointers to their

microstatements in the Polish String. The Labeled Statement Table contains

This Polish String will be used by the simulator to evaluate

The Switch Label Table

Number of bits Location of the
of the register last bit of the

register in the
Storage Array

the pointers to the label expressions in the Polish String.

Register Table, R(i,j), i=1,2,3; j= l , . . . , NR

SR(1, j 1 S R (2 , j) SR(3, j) SR(4,j)

Subregister Table, SR(i,.j), i=1,2,3,4; .i= 1, ..., NSR

BCD name of Number of bits Location of the
the register of the subregister last bit of the

Subregister in
the Storage Array

BCD name of
the corre-
sponding
register

I
I
I
I
I
I

Location of t h e
l as t b i t of t h e
f i r s t word of
t h e memory i n t h e , Storage Array

- 19-
Memory Table, M (i , j) , i=1 ,2 ,3 ,4 ,5 ; i=l , . . ., NM

D (1 , j)

RCD name
t h e decoder

emory

D(2, j) D (3 , j)

Number of b i t s Locat ion of t h e
i n t h e correspond- l as t b i t of t h e
ing r e g i s t e r corresponding

r e g i s t e r i n t h e
S torage Array

Number of b i t s
p e r word of
t h e memory

i 36 b i t s
Current p o s i t i o n >.

)

1 ;
36 b i t s 36 b i t s 36 b i t s

1st p o s i t i o n 2nd p o s i t i o n . . . Sw(2 , j) th
p o s i t i o n \

<.A (BCD) I

Index k of
t h e cor re-
sponding
address reg-
ister R(1,k)

Decoder Table , D (i , j) , i=l, 2 ,3 ; j=l, . . . , ND

Switch Table , SW(i, j) , i=1 ,2 ,3 ; i=1, ..., NSW

BCD name of Number of Locat ion of t h e last
t h e swi tch pos i t i ons b i t of t h e c u r r e n t

p o s i t i o n i n t h e S torage

Number of
words i n
t h e memory

I

Format of t h e Storage Array wi th Switches:

I
I
1
I
I
1

E
I
I

e c (1) C(2)

by a manual or

... C(NC+l)

- 20 -

BCD name
of the clock

I 1 I

N C = n u r r b e r Count for ICount f o r , . . .
0-clock list clock ' (NC-2)-

Count &r

clock clock [
i

J.

S W L (1 , j) SWL(2,j) SWL(3,j)

BCD name of BCD name of Entry index to
the Switch the position of the microstate-

the Switch ments in the
Polish String

r

Entry point to
the expression
in the Polish
String

Clock Table, C(i), i=l, ..., NC+2

Switch Label Table, SWL(i,j), i=l92,3,i=1,..., NSWL

This table contains the necessary information about t h e Labels of the

It can be rapidly scanned if a switch interrupt occurs Switch Statements.

internal switch setting.

I I 1

E
1,

I
1

8
E
1
E
t
C
1
s
I
E
I
I
1
I

m 5

SWL(1,j) S a (2 , j)

BCD name of BCD name of Entry index to the
the Switch the position of microstatements in

the Switch the Polish String

- 21-

.

i

Switch Label Table, S V L (i , , i) , i=l,2,3,j=l,..., NSWL

This table contains the necessary information about cile Labels of the

Switch Statements. It can be rapidly scanned if a switch interrupt occurs

by a manual or internal switch setting.

I

Labeled Statement Table, LST(j), J=1, ..., NLST
All Labeled Statements are consecutively numbered from one to NLST.

This table contains the corresponding entry indices to their Label expression

in the Polish String.

I I
LST (j)

k = index P (1 , k)
as entry point to the I Label of jth Statement

P o l i s h String, P (la) , P(2,j); j=1, ..., NP
As it was noted before, the nicrostateinents and label expressions are

stored in reverse Polish notation in the Polish String. The rules of the

translation of :he expressions is described by C. L. namblin: Translation

to and from P o l i s h notation. Comput. J. 5, 3(0ct. 1962), 210-213 in the

"I. Orthocox A to Reverse Zollsh" Section. A position in the Poiish String

- 22 -

t

Number of bits Location of the Number of bits
in the memory last bit of the in the address
word address register in [register

the Storage Array
with negative sign i

to a constant, to an operator or t o B srpecial instruction. The first word,

Location of
the last bit of

* the first word of
the memory in the '

' Storage Array

P(1,j) defines the above types.

Storage elements: P(1,j) is a positive non-zero integer and it refers to

the number of bits of the storage element.

Zegister, Subregister, Switch name, Switch position

I I I
P (1,j) P(2,j)

Number of bits Location of its
of the storage last bit in the , element Storage Array

The switch name corresponds to the current position location.

Memory Word '

When a memory word with constant address is referenced in the text, its

'translated form will be the same in the Polish String, as a register. When

a memory word with its address register is referenced, it is translated into

two positions of the Polish String using the following form:

Note that the distinction is made between the two forms by the sign of

P(2,j)

- 23-

Constants

Constants are represented directly in the Polish String. This

restricts the constant with maximum 36 bits, b u t the actual size in number

of bits is not defined by the Translator. Since a constant is always con-

nected with a storage element through a binary operator, the size of the

constant is defined by that storage element and the binary operator. For

this reason constants are represented with P(l,j)=O.

1 1 0 I The constant as
a full word with
preceding zeros. I I

i

Operators

All unary and binary operators are represented with P(1,j) = -101.

later versions, we might separate the different operators with P(1,j) = -101,

-102, -103,... if that gives any special advantage for other subprograms.

In

-101 1 BCD name of the
operator

Example :

A Decoder is translated as an expression. Thus if D is the decoder of

register F which has n(F) bits and location L(F) in the Storage Array, the

no tat ion

- 2 4 -

has the equivalent form in the Polish String

The replace operator (= character) is regarded as a special operator.

The form of the Polish String for

A= (Expression)

is the following:

I t -. I 1 (Expression translated) 1

Special Instructions

Special Instructions consist of the following:

1. Clock reference

2. Entry

3. Exit

4 . Transfers

- 25-

-1

1. Clock reference

k

When a clock name P appears in an expression, it is translated into

the following form

where k is the index value the clock was referenced, P (k) . If it was not

indexed, then k = 0 .

2-3. Entries and Exists

Since during the Simuiation, the Poiish String is executed in segments,

we define a full segment of the Polish String as follows:

' A Full Segment of the Polish String are consecutive positions such

that

1. The first position is an Entry position

2. The last position is an Exit position

3. Between the first and l a s t positions there are no Entry and Exit

positions, and only one of the following four cases is possible:

a) translated form of the expression of one terminal

b) translated fora of one switch statement

c) translated form of the expression of the label of one iabeled

statement

d) translated form of all the microstatements of one labeled

U
I
D
I
I
1
I

r
E
E
1
1
t
I
I
1
I
I

a

- 2 6 -

The format of the Entry and Exit positions are as follows:

Entry

. -2
i

Exit -

where P(2 , j) contains the index value J* of the corresponding Exit position.

The Full Segment of the Polish String enclosed by the Entry and Exit posi-

tions can be regarded as a subroutine and P(2,j*) will be used for return

transfer .
4 . Transfers

Subroutine Transfer

When a terminal is represented in an expression E, it is necessary to

evaluate the full segment of the expression of the terminal inside of the

full segment of the expression E. This is accomplished by the Subroutine

Transfer which has the following form

Position k should be in the same full segment with j .

- 27,
Example

Consider the following statements.

REG1 STER, A(5), B(5), C, D (5) , E(5)s G(3), F(3)

DECODER, K(17) = F

CLOCK, P (2)

TERMINAL, SUB = K(lO)*C*P(l)

/SUB*E(l)/ IF (G(2).EQU.1) THEN (A = B), D = A+E

. . .

If L(x) indicates the location of register x in the Storage Array, then

the Polish Array has the following segments (j indices were arbitrarily

chosen for this illustration):

I - I

138

139
74 1 L(C)

75 -101 *
76 -1 1

77 -101 *
78 -3 0

-.

120 1 -2 1 2 4

1 2 1 -4 70
1

122 1 L(E(1))

123 -101 *
1 2 4 -3 ’ 0

I

125 -2 138

1 2 6 , 1 L (G W

127 0 1

128 -101 EQU

129 -5 ‘ 133

6 L@) 130

131 -101 -
I

-

-3 0

... ...

- 2a-

Terminal
Segment

Label
Segnent

Microstatements
Segment

- 2 9 -

0- IEND

0 +Count):I

3.2 TRANSLATOR - FLOW CHART

I

YES

i n t o

A (j) and p r i n t

'
V I \

I
\ \ -I

I s Col. 1 !IC" ?

I\

I\

w7 Sepprat e symbols
Move a r r a y
BE t o t h e

end o f B
a r r a y

i n A i n t o a r r a y BE u Move a r r a y
BE i n t o

a r r a y B

I

I - ..
I \

r \

- 30 -

(1) Separate Symbols from array A into array B

SUBROUTINE SEPT (A, N, B, IND, M)

Given 6xN BCD characters packed in the array A(k), K = 1, ..., N, the
routine unpacks the Characters and stores them in the array B (j) , j = 1,

..., M. The array IND (j) , j = 1, ..., M will contain identifying integers
as follows:

1 Variable name

6

7

8

9

10

11

12

13

Number (constant)

((left parenthesis)

1 (right parenthesis)

(period)

= (equals)

I (slash)

* (asterisk)

+ (plus)

- (minus)

$ (dollar sign)

Y (comma)

1 (apostrophe)

The unpacking is done as follows:

1. Blanks are disregarded.

2. Each character which is not a letter or digit is regarded as a

separator and it occupies one word in the array B, left adjusted

with 5 blanks followed.

- 31,
3 . A string of letters or digits are regarded as a Variable Name if

the first character is a letter. If it consists of less than 6

characters, they will be left adjusted in B (j) with blanks followed.

If it consists of more than 6 characters, only the first 6 characters

will be retained in B(j).

4 . A string of digits (from 0 to 7) is regarded as an Octal Number.

If the string has less than 12 digits, the octal number is placed

in B (j) right adjusted.

first 12 digits will be retained.

Digits 8 and 9 are not allowed.

If it has more than 12 digits, only the

5.

- 32 -
FLOW - CHART

E S
J

S p e c i a l
Character

Is IN "0'1 ?

- 3 3 -
(2) Translate B a s a Declaration Statement

B (1) defines the type of declaration. M i s the number of
I

symbols separated i n t h e array B. The following flow-charts are

given by types:

REGISTER, l i s t

B (1) = REGIST

The l i s t consis ts of one or more r e g i s t e r s i n the form of

NAME (dl) or NAlyE

ENTRY

I -

\I/

Y
NSTORE ---3

V
i + l + i

YE: 7

- 34 -

The l i s t c o n s i s t s of one or more s u b r e g i s t e r s i n t h e form of

where R is t h e name of a r e g i s t e r , S is t h e name of t h e sub-

r e g i s t e r .

B(i + 2) --t

1 1 + SR(2,NSR

l B (i t7) + IL

i c l l i IL+ 1 4 S R (3,NSR)

EX I T NO

- 35 -

B (1) = MEMORY

The l i s t c o n s i s t s of one or more memories i n the form of

n
E N T R Y

I

v
B(i) +

M(1 , N M)

4
F i n d index k such
t h a t B (i i - 2) is

R(1 ,k)

k + M (4 , N M)

\c

N O . -
I s i l e s s than M

\h Y E S

i + l + i

- 36 -
8
I
I

DECODER, l is t

B (1) = DECODE

The l is t c o n s i s t s of one or more decoders i n t h e form of

NAPE = R

NAME = R (S)

d2 NAME = R(dl -
where R i s a r e g i s t e r , s is a subreg i s ter , d and d are octal

numbers

1 2

ND+ 1-3- ND

B (i + 6) . - B (i C 4)
+ 1 --+ D(2,ND) o c t a l number ?

R (3 , k) - D(3,ND)

F i n d index k such

B(i + 6) +D(3,ND)

t
I '-> V

h
I
1

I

NO
I s i less than M I

YES

i + l + i s ~ (i) a comma ?

- 3 7 -
SWITCU~ list

B (1) = SWITCH

The l i s t c o n s i s t s of one or more switches i n the form of

+ NSTORE

. - .
SW(2,NSW)f 1

I
/ = . , SW(2,NSW,
\

i + 2 - + i

8
I
I
8
8
I
I
I
I
I
8
I
I
I
8
I
1
8
8

- 30 -
CLOCK; list

3(1) = CLOCK

The list has the form of NArm

or

NAME (d)

YES
I 1

I
I
8
8
8
I
8
8
8
8
8
I
8
I
1
I
1
I
I

- 39 -
TERMI>,n,L, list

B(1) = TERMIN

T h e l i s t c o n s i s t s of the i n d i v i d u a l t e r m i n a l d e c l a r a t i o n s in

the form of NAME = Expression

INTCI-NT I

NP+ T(2,NT)

-2-> P(1 ,NP)

F i n d index j such
that B (j) i s a com
or s e t j = M +1

I

-3 -> P (1,NP)

I
I

N O

I
I
8
8
1
I
I
8
I
I
8
8
t
8
8
I
I
I
I

- 40 -
(3) ~ r a ~ s l a t e S as a LaSeled Sta tement o r a Switch statement

The only difference between a Labeled Statement and the

Switch Statement i s i n t h e t rans la t ion of the Label. The trans-

. l a t ion of the microstatenents a re the same.

- 41-
(3a) Translate Label

B (1) = /
/
\

Find j l such that
B (j 1) is a / and

i17 1

NP+ 1 4 N P

I1 = loc. of the curren
position of the sw

1 2 = loc. o f the B(4)
position in STORE

NLST 1 NLST

B(2) d Skh(1 ,NSWL)

B(4) 4 SLh(2,NSWL)

expression E (j >

into P

\I/
[NP+l?NP

F P + 1 ,-+ NP 1

12 --3 P (2 , N P t l)
- 1 0 1 - 3 P(l,NP+2)
= @ P(2,NP+2)
3 6 + P(l,NP+3)

1

- 4 2 -
(3b) T r a n s l a t e M i c r o s t a t e m e n t s

N I F = depth of the I F c o n d i t i o n s . The a r r ay I F (L) , L = 1, ..., NIF
c o n t a i n s the t r a n s f e r p o i n t s i n t h e P o l i s h S t r i n g .

I

3 I

D E C O D E (B (j 0))

NP+ 1 4 NP .v7 T r a n s l a t e e x p r .

’ NO

B (j) a c o m a ?

T r a n s l a t e YES
/ S w i t c h

S e t t i n g

1 N I F + 1 4 N I
\
I

YES
I s B (j) lllFI1 7

B (j 2) is t h e f i r s t

IF(N IF)+ L Find j l (> j O)

NP+l +

NIF-1 4 ° F
F i n d j 2 (> j l)

s u c h t h a t e i t h e r
B (j 2) is a comma

ed r i g h t paranth

B (k) i n t o P

j 1 + 1 f k f; j 2-1

u n p a i r e d r i g h t
p a r e n t h e s i s

T r a n s l a t e
e x p r e s s i o n B(k) i n t o

jL k 4 j2-1

A N P + 1 3 N P

NP+IF (NIF)

L2+2-+j I

- 4 3 -

No

(3c) Translate expression

I

The expression is contained in B (j) , j = j,, ..., j, and it

1 is translated into the Polish array P(2, k), K = NP + 1, ...
n (2 , L) is a temporary array.

1

F,?,
+ 4 B B * + EB

.-I-
I s L = O ?

YES

T-
I s j larger t h a n jl > \

I

FES
YES

Is L zero 7 /
1 -101 P(1 ,NP)

P + I + N P
?f (2 , L) - + P (2,NP)

'

\

"I
1
I
I
B
1
I
I
I
I
I
I
I
.I
I
I
I
1
I

- 44 -
(3d) DECODE (B (i)) -+ P

B (j) m u s t be one of the f o l l o w i n g :

1.

2.

3 .

4.

5.

6.

7.

Constant

Regis te r n a m e

M e m o r y ' n a m e

Decoder n a m e

T e r m i n a l n a m e

Clock n a m e

S w i t c h n a m e

\
Y

1
I

Decode

R e g i s t e r

I I m

1
. .

Decode
B (j) a c l o c k nam Clock \

/

i\

\
I

- 45 -
Decode Reqister, B (j) E R (1 , L)

T h e r e g i s t e r may have one of t h e forms: Name

N a m e (Subreg. name)

N a m e (dl)

N a m e (a,-d,)

\ /
B (j 2) must be a
subreg.name. Find
k such that

I

Decode Memory B (j) 5 M(1,L)

T h e memory word m u s t have one of the forms: Name (addr. reg.)

N a m e (constant)

- 46 -
D e c o d e D e c o d e r B (j) = D (1 , L)

The Decoder must have the form of: Name (const.)

D(2 ,L)+P(l ,NP+l)

D (3,L)+P(2,NP+ 1)
-
/

-

0 d P(I ,NP+2)
B(j +2)+ P(2,NP+ 2)

D e c o d e C l o c k B (j) E C(1)

T h e Clock must have the form of e i the r Name or Name (const.)

@* ENTRY
-1 4 P(1,NP)

NP+ 1 3 NP i 4 P(2,NP)

A

- 47 -
Decode S w i t c h 13(j), E (f + a , B (j S 2) , B (j + 3) = r&(l,l), (, PO€.,)

i.e. It must be an expression NAME (Pos)

which must be translated as YES or NO

A r e B (j t 1) and
B (j + 3) l e f t and r i g h t

ar. \ ENTRY r
W

36 --+ P (1 , N P + l)

SW(3 , L) + P (2 ,NP+1)

B(j + 2) - P (2 , N P + 2 j

- 48 -
(3e) Translate switch Settinq

This must be a microstatement in the form of

Sw.Name = Sw. position

and B O) SW(1,L)

NO
I

NP+ 3 3 N P
j+2 4 j

NP+ 3 3 N P
j+2 4 j

- 49 -
(4) SAVE in Communication Table

This is a part of the Executive Program. The detailed flow charts will

be given in another report.

- 5 0 -

4. SIMULATOR

4.1 Description

The Simulator executes test programs written for the designed computer

and prints out the contents of prescribed registers.

of the Translator must precede the Simulation because the Simulator needs

the results of the translation.

Obviously, the calling

The Simulator consists of the following four routines:

Loader

Output routine

Switch routine

Simrrlate routine

Loader.

punched cards and store it into the memory of the designed computer.

is accomplished by the Loader.

Output routine. During the simulation, the contents of certein registers

will be printed out. This is handled by the Output'routine which must be

initialized by the list of the registers whose contents must be printed.

Switch routine. All digital computers have manual switches. The simulation

of a manual operation, e.g. turning the POWER switch ON, is accomplished by

the Switch routine through reading switch cards.

Simulate routine.

Simulate rodtine.

For the simulation, it is necessary to read the test program from

This

The actual execution of the test program is'done by the

The above four routines are not independent. The Simulate routine can

call parts of the Output and Switch routines.

done in a loop, called Label Cycle loop.

The actual simulation is

One label cycle consists of 4

steps :

- 51-
1. The requirement for manual switch setting is tested. If there

are switches to set, the corresponding segments of the Polish String are

executed.

2 . All labels are tested for true or false. No true label causes

exit from the loop. The same way, more than one true label corresponding

to the same clock time causes an exit.

3. The corresponding microstatements of the true label are executed.

4 . The contents of the specified registers are printed by the Output

routine .
Control cards

The Simulator has its own control cards for the purpose of initiating

the above-mentioned four routines. The control cards have * in column 1,
the list starts from col. 10:

*LOAD

*OUTPUT list

*SWITCH list

*SIM list

The lists are described in the sections of the four routines.

4.11 Loads

The Loader is initiated by the control card

col. 1 = *
C O ~ . 2-5 = LOAD

The routine assumes that the above control card is followed by data

cards containing a test program.

format :

These data cards must have the following

- 52 -

co l . 1 = blank

co l . 5-10 = name of a memory of t h e designed computer, l e f t

ad jus t ed , o r name of a r e g i s t e r .

co l . 15-20 = o c t a l l oca t ion i n t h e memory, r i g h t ad jus t ed , blank i f

co l . 5-10 conta ins a r e g i s t e r name.

co l . 27-50 = t h e o c t a l word t o be s t o r e d i n t h e above def ined loca-

t i o n , r i g h t ad jus ted .

Comment ca rds , w i th C punched i n column 1, may be i n s e r t e d between t h e

tes t program.

s t o r e s t h e o c t a l words i n t h e Storage Array a t t h e def ined l o c a t i o n s .

4.12 Output r o u t i n e

The Loader r eads t h e test program card by card , p r i n t s i t , and

The c o n t r o l card , *OUTPUT, i n i t i a t e s t h e Output r o u t i n e by d e f i n i n g

r e g i s t e r s and swi tches whose conten ts and p o s i t i o n s are t o be p r i n t e d .

l i s t i n co l . 10-72 may have one of t h e two forms

The

LABEL (n) = R l , R2, ..., Rk
CLOCK (n) = R1, R2, . . . , Rk

where R1, R2, ..., Rk are t h e names of r e g i s t e r s and swi tches whose con ten t s

and p o s i t i o n s are t o b e p r i n t e d . In t h e f i r s t case, LABEL (n) , t h e p r i n t

occurs af ter every n l a b e l cyc le s ; i n t h e second case, CLOCK (n) , a f t e r every

n c lock cyc le s . Na tu ra l ly , i f t he re w a s no c lock def ined i n t h e designed

computer, t h e c lock cyc le may no t be used. n must be a non-zero o c t a l i n t e g e r .

4 . 1 3 Switch r o u t i n e

The *SWITCH c o n t r o l ca rds def ine manual swi tch s e t t i n g s . The l i s t must

nave t h e fol lowing form:

co l . 10-72: n, SW = PS

.. 5 3 -

4.14 Simulation routine

The control card, *SIN, starts the execution of the test program. Thus

the control cards for the Loader, Output and Switch routines must precede it.

Since the simulation of the test program may run into an infinite loop, it

must be safeguarded by a time limit. This time limit is defined by a maximum

number of label cycles allowed and it is given in the list of the control

card with one of the 2 forms

col. 10-72 either n

or n (L)

where n and L are nonzero octal numbers.

1. n without the subscript L gives the maximum number of label cycles afCer

which the simulation stops.

2. If n(L) is given, the simulations stops if the L-th labeled statement

is evaluated n-times. The numbering of the labeled statements corresponds

to the order as they appeared in the description of the designed computer.

Execution of Sepments of the Polish String

During the simulation, segments of the Polish String must be executed.

This is done by the help of a pushed-down pseudo accumulator and by the opera-

tor subroutines. The pseudo accumulator (AC) can handle up to 72 bits, thus

all registers, memory words, etc., of the designed computer are restricted in

maximum size of 72 bits. There are 2 basic subroutines in the Simulator:

BRNG (n,L) brings n-bits from location L in the Storage Array into the pseudo

accumulator, STRE (n,L) stores the contents of the pseudo accumulator into

the Storage Array. The operators (complement, logical OR, AND, functions)

must have their corresponding subroutines in the Simulator.

are performed between the last two entries of the pseudo accumulator.

The operations

- 54 - I
4.2 SIMULATOR - FLOW CHARTS

I I n the I n i t i a l i z a t i o n , t h e r e s u l t s of the T r a n s l a t o r are

r ece ived through the Communication Table. I
ENTRY In it i a l i z a t i o

i
1

Read card
> [col.1. A A ,I

col. 2-72 A(j) 0
YES

I
1
I

NO -
I

\I

-3-

I ,,re% I C Q

I

P R I N T k-6

W

- 55 -

1
I

(1) Simulate r o u t i n e

Get n and LL
from c o n t r o l c a r d

0 4 IEC
I 0 - ILL

- 56 -
(la) Search for the unique t r u e Label

Output: NK = S t a r t i n g index of the microstatements i n t he

Polish S t r i n g for the t r u e Labeled Statement

E N T R Y

\ ST(L)- k

C a l l SEGMNT

Y E S C C (1 , l) ---3 L

Find next c l o c k

by c l o c k , i nc rease \ I

- 57 -

.(lb) Execu te Pol ish Sement: SEGMNT (N P , I , MC, CC)

1+1 - I
with arguments P(1,k) + A C (l , l)

k + l + k
2 -jj

- 58 -
(ic.) Find next clock-time: i

(Id.) Find t r u e Label by clock, i n c r e a s e c o n t e n t s of proper c locks

Is k l a r g e r t h a n j

I 9

CC(2,n) + i ++ 4,

I1

k - 1 -k

T T - 1 -
0-i

4
s L l a r g e r than’

NG ?
YES

E r r o r 0

8
I

1
1
I
1
I
I
8
8
8
8
8
t
I
I

- 59 -
(l e .) Check and Execute I n t e r r u p t Table

The i n t e r r u p t table I T (] , k) , j = 1, 2 , k = 1, ..., IN" is estab-

l i s h e d by *SWITCH c o n t r o l cards .

label c y c l e when t h e i n t e r r u p t occurs , I T (2 , k) g i v e s t h e en t ry -

p o i n t t o the ? o l i s h S t r i n g f o r t h e execut ion of microstatements .

I T (1 , k) g ives t h e count of t h e

ENTRY .o
+ Y E S (L] I s INT zero ?

I I

Execute Polish

1-k

CC(j),j I,...,Mc

* 60 -
(if.) Update MC-clocks

ENTRY 2
I 3

C(i + 3) + 1
+ C (i+ 3)

/

YES-
I s k zero . ?

+ I s k smaller than N N o (q 2 q

8
8
t
I
1
1
I
1
t
I
I
8
I
8
I
I
I
I
I

\ , .-

- 61 -

\
Read card

~ 0 1 . 1 . A 1
col. 2-72 A(j)

(2) Load r o u t i n e

ENTRY 0

8
I

\ / . /

- 62 -
(3a.) I n i t i a l i z e Output r o u t i n e

JI -
I

i -+- NOUT

0 -NL

a switch name ?

\IlYES
1 1

8
8
I
I
1
8
I
I
I

- 6 3 -

(3b.) P r i n t part of the Output r o u t i n e

I I

0, Y E

C(3) - NCK Is NL= NDC ?

t Y E S lClockl

, 0 - N L I -
> BB

'Label ' - - P r i n t - /
BB llcyclefl I EC - ea

I t l a s t label" I

U l - v V

- 64 -
(4.) S w i t c h r o u t i n e

Interrupt T a b l e : I T (l , j) , I T (2 , J)

ENTRY 0
Separate symbols

from A (j) into B(k)
j = 2,...,12

(This routine i s the same

a s (1) o f the Translator)

I
I
I
8
I
1
8
I
I
8
8
I
I
8
I
8
8
I
8

2
Form: A1 (operator symbol) A

1' A2 Symbol Description Arguments A

+ Logical OR A t l e a s t one of the arguments
must be a var iable . I f both
a re var iables , they m u s t have
the same length i n b i t s : n (A)

* Logical AND A t l e a s t one of the arguments
must be a var iable . I f both
a re var iables , they must have
the same length i n b i t s : n (A)

- Exclusive OR A t l e a s t one of the arguments
must be a var iable . I f both
a re var iables , they must have
the same length i n b i t s : n (A)

.EQU. If A i s equal t o A t l e a s t one of the arguments
~~

$he r e s u l t is must be a var iable A2 one, otherwise z e r ~

.ADD. The r e s u l t is the A t l e a s t one of the arguments

The a re var iables , they must have
algebraic sum of must be a var iable . I f both
A1 and A
possible overflow the same length: n (A)
b i t is discarded.

2 '

.SUB. The r e s u l t i s the A t l e a s t one of the arguments
a lgebraic sum of must be a var iable . I f both

, the complement a re var iables , they must have
A$ O H the same length: n (A)

r i gh t by A2 b i t s . 1

l e f t by A2 b i t s . A mus t be a constant

A must be a variable with
length n (A11

. SHR. Al is sh i f ted

.SHL. A1 is shif ted

2

.CIRL. Al is c i rc led
l e f t by A2 b i t s .

I V . AVAILABLE BINARY OPERATORS

Number of
b i t s of the
r e s u l t

1

- 66 -
Information about d e f i n i n s new operators

I f one w i s h e s to d e f i n e new b i n a r y o p e r a t o r s , t h e r e are

t w o steps t o be followed:

1. Change the deck OP (ENTRY OPER)

2. Writ ing t h e func t ion r o u t i n e .

1. Assuming the name .xMc. for t h e new b i n a r y o p e r a t o r , t h e

OP r o u t i n e is changed as follows:

a) The decimal i n t e g e r NOP must be increased by one.

b) B C I 1,MM

card must be i n s e r t e d t o t h e end of the a r r a y SYM

c) TSX XXX,4

card must be i n s e r t e d t o the end of the a r r a y ENT

The subrou t ine XXX(IIB) must be provided w i t h the package. 2 .

The address of B,. a (B) , p rovides the addres ses of t h e argu-

ments as fo l lows:

a (B) - 1 and a (B) a r e t h e two consecut ive addresses where the

argument A is located i n t h e r igh t a d j u s t e d 2

form w i t h p receding z e r o s .

a (B)-2 con ta ins the number of b i ts of A2. It is

z e r o i f A i s a c o n s t a n t .

a(B)-4 and a(B)-3 are t h e t w o consecut ive addresses where the

2

the argument A1 i s l o c a t e d i n f i g h t a d j u s t e d

form w i t h preceding ze ros .

a (B) -5 conta ins the number of b i t s of AI. I t i s

z e r o i f A1 i s a c o n s t a n t .

I r e p r e s e n t s an i n t e g e r and it must be decreased by one.

